Abstract

In situ detection and identification of PAHs, a group of well-known persistent organic pollutants, presents a great challenge to environmental researchers. This work developed a novel substrate based on thiol-functionalized Fe3O4@Ag core–shell magnetic nanoparticles for surface enhanced Raman scattering (SERS) sensing of PAHs. The surface morphology, structure, and magnetic properties of the substrate were characterized using multiple complementary techniques including transmission electron microscopy, energy-dispersive X-ray spectroscopy, vibrating sample magnetometry analysis, and extended X-ray absorption fine structure spectroscopy. The high saturation magnetization at 48.35 emu g–1 enabled the complete and rapid separation of the substrate from the PAH solution. Benzene, naphthalene, anthracene, phenanthrene, fluorene, pyrene, perylene, and BaP were chosen as probe molecules. Qualitative and quantitative determination of PAHs was achieved using a portable Raman spectrometer. The SERS sensitivity was ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.