Abstract

Thermally conductive silicone rubber (TCSR)-based thin sheets with low thermal resistance and high electrical insulation properties have been widely used in thermal management applications in the electronic and energy storage fields. The low thermal resistance is mainly attributed to the sheets’ small thickness. In order to further decrease the sheets’ thermal resistance, it is necessary to decrease their thickness. However, the sheets mostly have a thickness of at least 0.20 mm, and it is still a challenge to decrease the thickness to less than 0.10 mm mainly due to the difficulty of smooth calendering through a narrow roll-to-roll gap on calenders. Here, a low-viscosity calendering method has been developed to prepare TCSR-based ultra-thin sheets. The sheets present unprecedentedly small thickness (~0.08 mm), low thermal resistance (0.87 cm2K/W), high tensile strength (~8 MPa), high flexibility, high electrical resistance (>1014 Ω·cm), and high thermal dissipation (>30 °C decrease in LED working temperature). Comparison studies between this new method and the conventional preparation method have been carried out to understand the mechanism of the improvements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.