Abstract

In order to develop ultraviolet protection and yellowing resistance silk fabric, the silk fabric was treated with dispersive TiO2/La(III) composite solution. The morphology, microstructure, ultraviolet protection and whiteness of the treated silk fabric were characterized by means of transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectra, X-ray diffraction and ultraviolet transmittance. Furthermore, the mechanism of the ultraviolet protection was investigated. The results show that the TiO2/La(III) composite particles disperse uniformly. The TiO2/La(III) particles can not only be treated onto the surface of the silk fabric but also can be treated into the interior of the silk fabric successfully. The result of Fourier transform infrared spectra and X-ray diffraction demonstrates that there are hydrogen bonds between the silk fabric and composite particles, and crystallinity of the treated silk fabric decrease when compares to the untreated silk fabric. The ultraviolet protection factor of the TiO2/La (III) treated silk fabric is significantly higher than that of the untreated silk fabric. The main ultraviolet shielding effect of TiO2 treated silk fabric is absorption. The La(III) treated SF has a bad ultraviolet shielding effect, but it has a certain reflection and absorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call