Abstract

Several edible plants contain flavonoids, including myricetin (Myr), which perform a wide range of biological activities. Myr has antitumor properties against various tumor cells. In this study Myr-loaded PEGylated niosomes (Myr-PN) were prepared and their anti-cancer activities were evaluated in vitro. Myr-PNs were prepared as a tool for drug delivery to the tumor site. Myr-PN was characterized in terms of size, zeta potential, and functional groups using dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (SEM). The Myr-PN size was 241 nm with a polydispersity index (PDI) of 0.20, and zeta potential -32.7±6.6 mV. Apoptotic properties of Myr-PN against normal and cancer cell lines were determined by flow cytometry and real-time quantitative PCR. Cancer cells showed higher cytotoxicity when treated with Myr-PN compared with normal cells, indicating that the synthesized nanoparticles pose no adverse effects. Apoptosis was induced in cells treated with 250 μg/mL of Myr-PN, in which 45.2 % of cells were arrested in subG1, suggesting that Myr-PN can induce apoptosis. In vitro, the synthesized Myr-PN demonstrated potent anticancer properties. Furthermore, more research should be conducted in vitro and in vivo to study the more details of Myr-PN anti-cancer effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.