Abstract
The multi-walled carbon nanotubes/nickel (MWCNTs/Ni) nanocomposite coatings were prepared on Cu substrate by electro-deposition method in the electrolyte with well-dispersed MWCNTs. Surface morphologies of the composite coatings with protrusion structures were confirmed by scanning electron microscopy. X-ray diffraction, fourier transform infrared spectroscopy, and energy-dispersive x-ray spectrometer were used to characterize the phase structures, functional groups, and elements distribution of the coatings as well as the incorporated MWCNTs. In addition, the effect of MWCNTs percentage on thickness, hardness, wear, and corrosion resistance of the coatings was also investigated. Results indicated that the incorporation of MWCNTs positively affected the hardness of coatings for their strengthening skeletons effect. Meanwhile, the coating with the MWCNTs concentration of 0.2 g/L could achieve the lowest friction coefficient, wear rate as well as the mass loss in the tribological test by a ball-on-disk tribometer. And also, the optimal corrosion resistance with the highest corrosion potential (Ecorr) and the lowest corrosion current density (Icorr) of the composite coating was finally proved after the potentiodynamic polarization evaluation, which could promote the potential applications in preparing the functional nanocomposite materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.