Abstract

AbstractA novel method for synthesis of amphiphilic macrocyclic graft copolymers with multi‐polystyrene lateral chains is suggested, by combination of anionic ring‐open polymerization (AROP) with atom transfer radical polymerization (ATRP). The anionic ring‐opening copolymerization of ethylene oxide (EO) and ethoxyethyl glycidyl ether (EEGE) was carried out first using triethylene glycol and diphenylmethylpotassium (DPMK) as coinitiators; the monomer reactivity ratio of them are r1(EO) = 1.20 ± 0.01 and r2(EEGE) = 0.76 ± 0.02 respectively. The obtained linear well‐defined α,ω‐dihydroxyl poly(ethylene oxide) with pendant protected hydroxylmethyls (l‐poly(EO‐co‐EEGE)) was cyclized by reaction with tosyl chloride (TsCl) in the presence of solid KOH. The crude cyclized product containing the extended linear chain polymer was hydrolyzed and then purified by treat with α‐CD. The pure cyclic copolymer with multipendant hydroxymethyls [c‐poly(EO‐co‐Gly)] was esterified by reaction with 2‐bromoisobutyryl bromide, and then used as macroinitiators to initiate polymerization of styrene (St), and a series of amphiphilic macrocyclic grafted copolymers composed of a hydrophilic PEO as ring and hydrophobic polystyrene as side chains (c‐PEO‐g‐PS) were obtained. The intermediates and final products were characterized by GPC, NMR and MALDI‐TOF in detail. The experimental results confirmed that c‐PEO‐g‐PS shows stronger conjugation ability with the dyes than the corresponding comb‐PEO‐g‐PS. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5824–5837, 2007

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.