Abstract

The use of tetrafluoroethylene (TFE) in academic institutions beyond a few millimoles has often been inhibited by the compound's inherent danger and general lack of commercial availability. On the other hand, TFE is prepared industrially on a rather large scale by a number of major fluorochemical companies via the pyrolysis of chlorodifluoromethane at high temperatures, yielding TFE and HCl. For a few years at The University of Alabama and Clemson University, we have been preparing TFE on a 100+-gram scale by the pyrolysis under dynamic vacuum of pentafluoropropionate salts, which can be obtained from the neutralization of pentafluoropropionic acid with a M(OH)n (where M=Li, Na, K, and Cs for n=1 and Mg, Ca, and Ba for n=2). Additionally, potassium pentafluoropropionate can be prepared from the reaction of potassium trimethylsilanolate and ethyl pentafluoropropionate. The pentafluoropropionate salts and their decomposition products have been characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, Fourier transform-infrared (FTIR) spectrophotometry, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDAX), X-ray diffraction (XRD), and single-crystal X-ray crystallography, where applicable. Typical yields of TFE obtained from pyrolysis of potassium pentafluoropropionate obtained from the acid-base neutralization method are >98%, while yields of TFE from the same salt prepared by the silanolate method from ethyl pentafluoropropionate are ca. 80%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call