Abstract

Amylose, a natural polysaccharides, is a well-known functional material, because it forms double helix and inclusion complex assemblies depending on whether guest compounds are present or not, owing to its left-handed helical conformation. Amylose is precisely synthesized by phosphorylase-catalyzed enzymatic polymerization. In this study, we investigated the phosphorylase-catalyzed enzymatic polymerization initiated from maltoheptalose (primer for the polymerization)-grafted poly(γ-glutamic acid) in the presence of different feed ratios of a guest polymer, poly(ε-caprolactone) (PCL). In the absence of PCL or presence of less amount of PCL, the reaction mixtures totally turned into hydrogel form, predominantly composed of amylose double helixes. On the other hand, aggregates, which were largely composed of amylose inclusion complexes, were formed in the reaction mixtures in the presence of larger amount of PCL. The analytical results indicated that double helix cross-linking points participated into the formation of larger network structure, whereas smaller network structure was fabricated from inclusion complex cross-linking points. These structures on molecular level hierarchically constructed different macroscopic network sizes, leading to difference in the material forms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.