Abstract

The effective treatment of membrane concentrate is a major technical challenge faced by the new coal chemical industry. In this study, a supported perovskite catalyst LaCoO3/X was prepared by a sol–impregnation two-step method. The feasibility of the supported perovskite catalyst LaCoO3/X in the UV-catalytic wet hydrogen peroxide oxidation (UV-CWPO) system for the purification of concentrated liquid of coal chemical wastewater was investigated. The effects of catalyst support, calcination temperature, calcination time, and re-use time on catalytic performance were investigated by batch experiments. The catalysts were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), and X-ray photoelectron spectroscopy (XPS). Experimental results showed that the supported perovskite catalyst LaCoO3/CeO2 prepared using CeO2 as support, calcination temperature of 800 °C, and calcination time of 8 h had the best catalytic effect. The catalytic performance of the catalyst remained excellent after seven cycles. The best prepared catalyst was used in UV-CWPO of coal chemical wastewater membrane concentrate. The effects of H2O2 dosage, reaction temperature, reaction pressure, and catalyst dosage on UV-CWPO were determined. Under the conditions of H2O2 dosage of 40 mM, reaction temperature of 120 °C, reaction pressure of 0.5 MPa, catalyst dosage of 1 g/L, pH of 3, and reaction time of 60 min, the removal efficiencies of COD, TOC, and UV254 were 89.7%, 84.6%, and 98.1%, respectively. Under the optimal operating conditions, the oxidized effluent changed from high toxicity to non-toxicity, the BOD5/COD increased from 0.02 to 0.412, and the biodegradability of the oxidized effluent was greatly improved. The catalyst has a simple synthesis procedure, excellent catalytic performance, and great potential in the practical application of coal chemical wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.