Abstract

Nickel catalysts supported on pure alumina (Puralox) and 5% silica-containing alumina (Siralox) have been prepared, characterized (XRD, UV–vis-NIR, IR, H2-TPR and FE-SEM) and tested. It is confirmed that small amounts of silica hinder the surface area loss of alumina upon calcination, allowing the retention of higher surface areas also when NiO is deposited on the support. Depending on the Ni loading, calcination temperature and on the presence/absence of silica, several species of Ni2+ form on the catalyst: highly dispersed ions, Ni-aluminate defective spinel species and NiO particles. The presence of 5% silica hinders the dispersion of Ni2+ ions and the formation of Ni aluminate phase, and favors the formation of the NiO phase. This is attributed to the competition of silica and nickel oxide for interaction on the most reactive surface sites of alumina. Silica shifts Ni species to less reactive sites where the Ni-alumina interaction is weaker. As result of this, the addition of silica to alumina supports gives rise to more easily reducible Ni catalysts, that become active in ethanol steam reforming at lower temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.