Abstract

Gold nanorods (GNRs) have the potential to be used as imaging and hyperthermia agents for cancer theranostics. Clinical applications of as-synthesized GNRs (i.e., cetyl trimethylammonium bromide (CTAB)-coated GNRs) are currently limited by their cytotoxicity and insufficient colloidal stability. With an aim to address these problems, we developed a self-assembly processing technique for encapsulating GNRs in poly(ethylene oxide)-poly(n-butyl acrylate) (PEO-PnBA) block copolymer (BCP) micelles. This technique uses simple steps of solvent exchange processes, based on the known principles of block copolymer self-assembly. The resultant BCP-encapsulated GNRs were found to be stable against aggregation under physiological salt conditions for indefinite periods of time, which has rarely previously been achieved by other means of encapsulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.