Abstract

The preparation of superoleophobic and superhydrophobic surfaces requires surface microgeometries and surface chemistry. In this study, an economical and environmentally friendly electrochemical etching method was developed to prepare superoleophobic and superhydrophobic titanium surfaces. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrophotometry (FTIR), energy-dispersive spectroscopy (EDS), and optical contact angle measurements were used to characterize the surface morphologies, crystal structures, chemical compositions, and wettability of the surfaces for both water and oil. The results show that the prepared superoleophobic surface has water, glycerol, and hexadecane contact angles above 150°, with rolling angles of only 1–2°. Analysis of the electrolyte, the reaction process, and the products demonstrates that the proposed method is inexpensive and environmentally friendly. The effects of electrochemical parameters such as current density, electrochemic...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.