Abstract

As diseases such as cardiovascular disease and cancer caused by food problems are more and more frequent, food safety has received great attention. Among them, the safety problem caused by food dyes is more prominent. Thus, it is of great value to develop sensitive detection methods for food dyes. In present study, sulphuric acid-mediated N,S-codoped red emissive carbon dots (namely as R-CDs) had been manufactured by using N-phenyl-o-phenylenediamine as precursor, sulfuric acid as additive for the first time. The structural and fluorescence properties of R-CDs had been systematically studied. The results demonstrated that R-CDs showed uniform spherical morphology and had a graphite-like structure, for which the average diameters size was 5.05 nm. Due to the various functional groups such as hydroxyl, pyridinic N, pyrrolic N and -C-SO4, R-CDs emitted bright red fluorescence. Importantly, because of the interactions between the functional groups of R-CDs with the selected food dyes, three dyes including amaranth, brilliant blue FCF and methylene blue can sensitively quench the fluorescence of R-CDs through IFE and static quenching effects. The linearity ranges of them were separately detected as 0.20 μM −20 μM, 10 nM-1 μM and 60 nM-8 μM. The limits of detection (LODs) of them were 70 nM, 4 nM and 20 nM, respectively. Further, R-CDs was successfully applied to the sensitive detection of three dyes from various food samples. To maximize the fluorescence properties of R-CDs, a R-CDs/PVA composite gel was fabricated to make R-CDs fluoresce in solid state condition. The potential of R-CDs/PVA composite gel for preliminary visualization analysis of three dyes was studied. Finally, ascribed to the low toxicity and good biocompatibility, the potential of R-CDs as probe for cell imaging was explored preliminarily.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.