Abstract

Sulfonated ordered mesoporous carbon (SO3H-OMC) solid acid catalysts from sucrose were prepared using hard-template method, and their catalytic performance as well as the deactivation mechanism for esterification of free fatty acids (FFAs) in waste cooking oils (WCOs) were evaluated. Effects of sulfonation time, sulfonation temperature and hard template structure type for the textural properties and acid properties of SO3H-OMC were systematically investigated by N2 adsorption–desorption, FT-IR, NH3-TPD, TEM and strong acid density analysis. The results indicated that, SO3H-OMC(s)-6-160 catalyst, which was prepared by using SBA-15 as hard template at sulfonation time of 6 h and sulfonation temperature of 160 °C, had well-ordered mesoporous structure and high –SO3H groups density (2.32 mmol g−1). Compared with SO3H-APC-6-160 catalyst, cation-exchange resin D072 and SO3H-OMC(k)-6-160 catalyst, it was found that the SO3H-OMC(s)-6-160 catalyst exhibited highest activity (FFAs conversion was 93.8%) and good stability for the FFAs esterification, attributed to its 2D-hexagonal channels and hydrophobic surface. The –SO3H groups being leached out of SO3H-OMC catalysts into the liquid phase (especially methanol) would be the main reason causing catalyst deactivation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.