Abstract

AbstractFor application as a low-cost conductive filler material, submicroscale Cu@Ag particles were fabricated at room temperature without any reductants by a multi-step addition method using an ethylene glycol-based Ag plating solution. Scanning electron microscopy images of the Ag-coated Cu particles demonstrated the formation of discrete Ag particles less than 100 nm in size as well as a thin Ag coating on Cu particles, during the early addition steps. However, as the thickness of the Ag coating increased, the small Ag particles agglomerated into Ag coatings with an increase in the number of Ag plating steps. Owing to the absence of additives such as surfactants, a comparison between the microstructural images and calculations indicated increased agglomeration between fabricated Ag-coated Cu particles with an increase in the number of Ag plating steps. However, thermogravimetric-differential scanning calorimetry of the agglomerated Ag-coated Cu particles after the fifth addition of the Ag plating solution demonstrated their antioxidation behavior even after 70 min in air at 150°C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call