Abstract

Stable polyurethane–polystyrene (PU–PS) copolymer emulsions were prepared by the polymerization of 2-hydroxyethyl acrylate (HEA)-capped PU macromonomer and styrene, using azobis(isobutyronitrile) (AIBN), a radical initiator, and 4-((benzodithioyl)methyl)benzoic acid, a reversible addition–fragmentation chain transfer (RAFT) agent. As the molar ratio of the RAFT agent to AIBN increased, the zeta potential of the resulting copolymer emulsion increased, but the average size and size distribution of the emulsion droplets decreased. A living polymerization of HEA end-capped PU macromonomer and styrene was characterized by a linear increase in the molecular weight and decrease in the molecular weight distribution with consumption of monomers. The tensile strength, hardness and water-resistance of the copolymer films, prepared from the PU–PS copolymer emulsions, were much greater than those of the films prepared from the pure PU emulsion. The copolymer emulsions, prepared via the RAFT polymerization process, are expected to exhibit better storage stability than those prepared via the conventional free radical polymerization process, due to the presence of carboxyl groups derived from the RAFT agent at the PS block termini.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.