Abstract
A series of nanospheres composed of temperature-sensitive poly(N-isopropylacrylamide), poly(ethylene glycol) 400 dimethacrylate, and poly(ethylene glycol) 1000 methacrylate was prepared by a thermally-initiated free radical dispersion polymerization method. Insulin was loaded into the nanoparticles by equilibrium partitioning. The loading capacity of insulin into the nanoparticles was 2.1% (2.1 mg insulin/100 mg nanoparticles). The stability of the loaded insulin at elevated temperatures was investigated by reverse phase high pressure liquid chromatography. The nanoparticles were able to protect the loaded insulin, as more than 80% of the loaded insulin could still be detected compared to 0% for the control (0.1% insulin solution in PBS) when heated to 80°C for 5 h. The stability of the loaded insulin at high shear stress (289 1/s) was also investigated. No significant loss of insulin was detected both from nanoparticles loaded with insulin sample and the control (0.1% insulin solution in PBS). The results showed that shear stress alone did not have a major effect on insulin denaturation. The ability of the nanoparticles to protect the insulin from high temperature and high shear stress made the system a good candidate as a carrier for insulin for fluidized bed coating technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.