Abstract

Abstract Silica spheres are used as a template to prepare Ag-coated silica nanospheres through electrostatic interaction, using a technique of homogeneous shaking instead of magnetic stirring. Pre-synthesized spherical Ag nanoparticles are firstly adsorbed onto silica spheres through bifunctional linking molecule, the silane reagent 3-aminopropyltrimethoxysilane, to form thin silver shells. These monodispersed Ag-coated silica nanospheres are assembled onto the glass substrates, which have been functionalized by 3-aminopropyltrimethoxysilane, to form close-packed three-dimensional Ag-coated silica nanosphere arrays by electrostatic interaction. The Ag-coated silica nanospheres were investigated as substrates for surface-enhanced Raman scattering using Rhodamine 6G as a probe molecule, and the enhancement factor of the Raman signal obtained on the Ag-coated silica nanospheres is about 1.74 × 109 for R6G. Compared with pure silver hydrosols, the prepared Ag-coated silica nanospheres have a higher Raman enhancing effect. The hybrid nanosphere substrates can be used as a highly sensitive chemical and biological sensor for Rhodamine 6G dye.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.