Abstract

In this research, electrospinning was used to prepare sodium alginate (SA)/polyvinyl alcohol (PVA) composite nanofiber membranes. Effects of electrospinning parameters on the morphology and fiber diameter were investigated, and an orthogonal design was chosen to optimize the parameters. The optimized nanofiber membranes were applied as an adsorbent for the removal of methylene blue (MB), basic fuchsin (BF), and methyl orange (MO). Kinetic and isotherm of adsorption and effects of different experimental conditions such as pH, contact time, and initial dye concentration on adsorption capacity were investigated. It was found that the optimum parameters for the nanofiber membranes were SA/PVA blend ratios (3:7), electric field strength (20 kV), flow rate (0.05 mL/h), and distance (12.5 cm) between the syringe needle and collector, and the mean fiber diameter of the optimized membranes was 99.58 nm. The adsorption of nanofiber membranes was well described by the pseudo-second-order adsorption kinetic model and the Langmuir model, indicating that the adsorption mechanism was chemisorption by a monolayer. Based on the Langmuir model, the adsorption capacities for MB, BF, and MO were 9.25 mg/g, 9.02 mg/g, and 7.35 mg/g, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call