Abstract
The discharge of the antibiotic wastewater has increased dramatically in our country with the development of medical science and wide application of antibiotic, resulting in serious harm to human body and ecological environment. In this work, ciprofloxacin (CIP) was selected as one of typical antibiotics and heterogeneous Fenton-like catalysts were prepared for the treatment of ciprofloxacin wastewater. The sodium alginate (SA) gel microspheres catalysts were prepared by polymerization method using double metal ions of Fe3+ and Mn2+ as cross-linking agents. Preparation conditions such as metal ions concentration, mass fraction of SA, polymerization temperature and dual-metal ions as crosslinking agent were optimized. Moreover, the effects of operating conditions such as initial concentration of CIP, pH value and catalyst dosage on CIP removal were studied. The kinetic equation showed that the effect of the initial concentration of CIP on the degradation rate was in line with second-order kinetics, and the effects of catalyst dosage and pH value on the degradation rate of CIP were in line with first-order kinetics. The SA gel microspheres catalysts prepared by dual-metal ions exhibited a high CIP removal and showed a good reusability after six recycles. The SA gel microspheres catalysts with an easy recovery performance provided an economical and efficient method for the removal of antibiotics in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.