Abstract

Sn–Co alloy films for Li-ion batteries were prepared by pulse electrodeposition on the copper foils as current collectors. Nanocrystalline Sn–Co alloy electrodes produced by using a solution containing cobalt chloride and tin chloride at constant electrodeposition conditions (pulse on-time ton at 5 ms and pulse off-time toff at 5 ms) with varying peak current densities, Jp have been investigated. The structures of the electroplated Sn–Co alloy thin films were studied to reveal film morphology current density relationships and the effect of the current density parameters on the electrochemical properties. X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM), Brunauer–Emmett–Teller (BET) surface area analyzer and Energy-Dispersive X-ray Spectroscopy (EDS) facilities were used for determination the relationships between structure and experimental parameters. Cyclic voltammetry (CV) tests were carried out to reveal reversible reactions between cobalt–tin and lithium. Galvanostatic charge/discharge (GC) measurements were performed in the cells formed by using anode composite materials produced by pulse electro co-deposition. The discharge capacities of these cells were cyclically tested by a battery tester at a constant current in the different voltage ranges between 0.02 V–1.5 V. The results have shown that Sn–Co alloy yielded promising reversible discharge capacities with a satisfactory cycle life for an alternative anode material to apply for the Li-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.