Abstract

Sn4+-doped titanium dioxide photocatalytic films were synthesized on 304 stainless steel (SS) by a duplex treatment. The SS substrates were alloyed with titanium (Ti) through cathodic-arc ion plating followed by a microarc oxidation (MAO) treatment in different electrolytes. Field-emission scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy were used to characterize the films surface morphology, crystalline phase, and composition, respectively. Photocatalytic activity was measured using an UV-Vis spectrophotometer. It was found that the films with a porous structure are mainly composed of TiO2, which exists in an anatase and rutile state. Furthermore, small quantities of SnO2 have been found in the Sn4+-doped titanium dioxide films. The fraction of anatase varies with the MAO time and electrolytes, whereas the pore size remains the similar with the same MAO current intensity and density and the surface roughness increases slightly with increasing MAO time. It was also found that the photocatalytic activity of the Sn4+-doped porous film improved, and the film synthesized with a shorter MAO time in a lower Na2SnO3-containing electrolyte is superior to the films with longer MAO times and higher Na2SnO3 concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.