Abstract

Oligonucleotide-conjugated antibodies have gained importance for their use in protein diagnostics. The possibility to transfer the readout signal from the protein to the DNA level with an oligonucleotide-conjugated antibody increased the sensitivity of protein assays by orders of magnitude and enabled new multiplexing strategies. A bottleneck in the generation of larger oligonucleotide-conjugated antibody panels is the low conjugation yield between antibodies and oligonucleotides, as well as the lack of product purification methods. In this study, we combined a non-site-directed antibody conjugation technique using copper-free click chemistry with ion-exchange chromatography to obtain purified single and double oligonucleotide-conjugated antibodies. We optimized the click conjugation reaction of antibodies with oligonucleotides by evaluating crosslinker, reaction temperature, duration, oligonucleotide length, and secondary structure. As a result, we were able to achieve conjugation yields of 30% at a starting quantity as low as tens of nanograms of antibody, which makes the approach applicable for a wide variety of protein analytical assays. In contrast to previous non-site-directed conjugation methods, we also optimized the conjugation reaction for antibody specificity, confirmed by testing with knockout cell lines. The advantages of using single or double oligonucleotide-conjugated antibodies in regards to signal noise reduction are shown within immunofluorescence, proximity ligation assays, and single cell CITE-seq experiments.

Highlights

  • Oligonucleotide-conjugated antibodies have gained importance for their use in protein diagnostics

  • The conjugation reaction of oligonucleotides to an antibody consists of three individual crosslinking steps: (i) functionalization of the antibody with a dibenzocyclooctyne (DBCO) click group; (ii) functionalization of the oligonucleotide with the corresponding azide click group; (iii) conjugation of the functionalized antibody and oligonucleotide via a copper-free click chemistry reaction

  • In order to maximize the yield of the antibody-oligonucleotide click chemistry conjugation reaction, we first sought to optimize the functionalization of the antibody and oligonucleotide

Read more

Summary

Introduction

Oligonucleotide-conjugated antibodies have gained importance for their use in protein diagnostics. Despite the vast variety of commercially-available crosslinking reagents and protocols for each of the non-site directed conjugation strategies, the oligonucleotide labeling of antibodies is not robust. The reason for this is multilayered, including problems related to a loss in the specificity of the antibody due to the masking of the antigen binding site[23], a change in polarity upon the addition of the reactive conjugation group and oligonucleotide, and a lack of purification methods for the removal of excess oligonucleotides, which increases the rate of false positive errors. We demonstrate the need of single oligonucleotide-conjugated antibodies for methods using absolute read count statistics from generation sequencing for protein quantification on the single cell level

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call