Abstract

Abstract Biocompatible silver-based nanofibrous frameworks have attracted intensive attention in wound dressing materials ascribed to their greater stability, minimal toxicity, excellent antibacterial activity, and extended therapeutic efficiency. The present investigation delineates a simple approach to synthesize silver nanoparticles (Ag NPs), and riboflavin (RF) decorated polyvinyl alcohol/β-Cyclodextrin (PVA/β-CD) electrospun nanofibrous scaffolds envisioning their application in wound dressings. PVA/β-CD polymer matrix regulates the stabilization of Ag NPs and RF. Also, it promotes the wound healing process and skin regeneration. The morphology, thermal properties, and their structure were also evaluated. Likewise, mechanical properties, biodegradation and drug release profile of the nanofibrous scaffolds were evaluated. In addition Antibacterial studies of the resultant nanofibrous scaffolds showed a strong inhibitory effect against Staphylococcus aureus and Escherichia coli at a considerable level. Moreover, Ag NPs-RF/PVA/β-CD nanofibrous scaffold were studied for its in vitro cytotoxicity using human embryonic kidney cells (HEK-293), and the results suggested that Ag NPs and RF present in the nanofibrous scaffolds exhibited its cytotoxicity. Besides, wound healing efficiency of the Ag NPs-RF decorated nanofibrous scaffolds was assessed using full thickness excision wounds in rat models displayed as an excellent biomaterial for wound dressings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.