Abstract

AbstractSeveral kinds of homogeneous organic–inorganic hybrid polymer thin films were designed with improved mechanical properties and low dielectric constants (<3.0). Novel soluble siloxane–silsesquioxane hybrid polymers were synthesized with cyclic and/or cage silane monomers, which had triorganosiloxy (R3Si1/2), diorganosiloxane (R2SiO2/2), and organosilsesquioxane (RSiO3/2) moieties with ethylene bridges at the molecular level, by the hydrolysis and condensation of 2,4,6,8‐tetramethyl‐2,4,6,8‐tetra(trimethoxysilylethyl)cyclotetrasiloxane (a cyclic monomer). The electrical properties of these films, including the dielectric constant (∼2.51), leakage current (6.4 × 10−11 A/cm2 at 0.5 MV/cm), and breakdown voltage (∼5.4 MV/cm) were fairly good. Moreover, the mechanical properties of the hybrid films, including the hardness (∼7 GPa), modulus (∼1.2 GPa), and crack‐free thickness (<2 μm), were excellent in comparison with those of previous spin‐on‐glass materials with low dielectric constants. The excellent mechanical properties were proposed to be due to the high contents of SiOH groups (>30%) and the existence of ethylene bridge and siloxane moieties in the hybrid polymer precursors. In addition, the mechanical properties of the hybrid films were affected by the contents of the cagelike structures. The more cagelike structures a hybrid film contained, the worse its mechanical properties were. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 626–634, 2003

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call