Abstract

Silicalite-1 nanosheets catalyst with a hierarchical architecture was hydrothermally synthesized using [C18H37-N+(CH3)2-C6H12-N+(CH3)2-C6H13](Br)−2 as template. It has been studied systematically by investigating the influence of different synthesis parameters and crystallization kinetics under tumbling conditions. Highly crystalline silicalite-1 nanosheets with large external surface was obtained by regulating the crystallization time and the amount of water, template and the alkalinity. It was examined as catalyst for vapor-phase Beckmann rearrangement of cyclohexanone oxime to caprolactam and exhibited an excellent catalytic performance and long catalytic lifetime. This can be attributed to nest silanol groups located on the large external surface of the nanosheets. Furthermore, the high mesoporosity of nanosheets shorten the diffusion path length and reduce coking deposition, which remarkably improve catalyst stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.