Abstract

The development of microelectrodes for the rapid in situ detection of neurotransmitters and their metabolic levels in human biofluids has considerable significance in biomedical research. In this study, self-supported graphene microelectrodes with B-doped, N-doped, and B- and N-co-doped vertical graphene (BVG, NVG, and BNVG, respectively) nanosheets grown on horizontal graphene (HG) were fabricated for the first time. The high electrochemical catalytic activity of BVG/HG on monoamine compounds was explored by investigating the influence of B and N atoms and the VG layer thickness on the response current of neurotransmitters. Quantitative analysis using the BVG/HG electrode in a blood-like environment with pH 7.4 indicated that the linear concentration ranges were 1–400 and 1–350 μM for dopamine (DA) and serotonin (5-HT), with limits of detection (LODs) of 0.271 and 0.361 μM, respectively. For tryptophan (Trp), the sensor measured a wide linear concentration range of 3–1500 μM over a wide pH range of 5.0–9.0, with the LOD fluctuating between 0.58 and 1.04 μM. Furthermore, the BVG/HG microelectrodes could be developed as needle- and pen-type sensors for the detection of DA, 5-HT, and Trp in human blood and gastrointestinal secretion samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.