Abstract

Silver nanoparticle arrays are well known to show characteristic surface plasmon properties sensitively dependent on the particles size, shape, surrounding dielectric and so on. In the present study, we investigated the influence of the silver film thicknesses, the dielectric materials and the annealing temperatures on the morphologies and the corresponding optical properties of silver nanoparticle arrays produced by thermal treatment of silver thin films. Different levels of dependence of array morphologies on the original silver film thicknesses, the dielectric environment and annealing conditions were identified. The variations of surface plasmon absorption bands can be correlated and explained by the morphological features, such as the particle size, aspect ratio, and coverage fraction. This correlation may be employed for the manipulation of desirable optical properties. Moreover, we attempted to integrate silver nanoparticle arrays into crystalline silicon solar cells and excellent light-trapping and spectrum-modification performance was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.