Abstract

β-Glucosidase from bitter almonds was immobilized on epoxy group-functionalized beads for catalyzing salidroside synthesis in a two-step process with n-butyl-β-D-glucoside (BG) as the glucosyl donor. The formation of salidroside ((0.59 ± 0.02) M) at a yield of 39.04%±1.25% was accomplished in 8 h by the transglucosylation of immobilized β-glucosidase at pH 8.0 and 50 °C when the ratio of BG to tyrosol was 1:2 (mol/mol). A study on the influence of different glycosyl acceptors demonstrated that the yield of the glucosylation reaction of phenylmethanol and cyclohexanol was higher than that of either phenol or cyclohexanol. This may account for the selectivity of the immobilized enzyme towards the alcoholic hydroxyl group of tyrosol in the salidroside synthesis reaction. A study on the synthesis of BG via the reverse hydrolysis of immobilized β-glucosidase showed that a yield of 78.04%±2.2% BG can be obtained with a product concentration of (0.23 ± 0.015) M.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.