Abstract

Aqueous electrolytes are safe, economic, and environmentally friendly. However, they have a narrow potential window. On the other hand, organic electrolytes exhibit good thermodynamic stability but are inflammable and moisture sensitive. In this study, we prepared water–PEG–lipid ternary electrolytes (TEs). To combine the advantages of water, polyethylene glycol (PEG) and propylene carbonate (PC). The nonflammable mixed electrolytes exhibited a wide potential window of about 2.8 V due to the beneficial effects of PEG and PC. Using these TEs, a lithium manganate–active carbon ion capacitor could be operated at 2.4 V with an energy density of 32 Wh/kg, based on the total active electrode material (current density of 3.3 mA/cm2). This value was significantly higher than that achieved using an aqueous electrolyte, thereby rationalizing the higher energy density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call