Abstract

This study aimed to prepare textiles with superhydrophobic and antibacterial properties using the Pickering emulsion impregnation method. Cellulose nanocrystals were synergistically employed with dimethyloctadecyl[3-(trimethoxysilyl)-propyl] ammonium chloride as the solid surfactant, and hydrogenated (PHMS) and hydroxyl (MSDS) polysiloxane were used as the oil phase for emulsification. The emulsions were mixed and diluted in specific proportions, and the superhydrophobic and antibacterial textiles were prepared through fabric impregnation–drying strategies. The study optimised factors such as emulsion ratio and surfactant dosage. Results demonstrated that the nanoscale rough structure prepared using Pickering emulsion exhibited remarkable superhydrophobicity with contact and rolling angles of 163.1° ± 0.5° and 7.2° ± 0.2°, respectively. This effect was achieved when the ratio of PHMS emulsion to MSDS emulsion was maintained at 1:2 and the surfactant dosage was set at 2 %. The superhydrophobicity of textiles was maintained even after three washing cycles and 50 abrasion cycles, demonstrating excellent mechanical durability. The developed textiles also exhibited excellent oil/water separation ability, reliable recyclability and stability. Moreover, they demonstrated excellent self-cleaning and antibacterial capabilities. Thus, these valuable functionalities hold the potential to considerably improve the practical feasibility of superhydrophobic textiles in various application scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.