Abstract

In this study, a novle robust antistatic waterborne polyurethane (WBPU)-ZrO2 nanoparticle (NP) coating is specially designed using sol-gel process. For this purpose the effective parameters on resin performance and surface resistivity of the synthesized coating investigated and optimized. The WBPU composite containing 6 wt% ZrO2 NPs, dissipates electrostaic charges with surface resistivity of 9.1 × 109 Ω sq−1 and also improves adhesion strength about 30 % compared with neat resin. Moreover, the homogenous distribution of modified ZrO2 NPs provides a surface roughness of 27.0 nm which can avoid the absorption of dust on the surface. Facile fabrication of robust WBPU–ZrO2 coating with considerable antistatic properity provides a pathway to the development of environmental friendly antistatic surfaces. The improved properties of synthesized WBPU–ZrO2 coating are mainly due to (i) stable adhesion of ZrO2 NPs into WBPU resin after cross-linking with resin matrix, (ii) formation of a rough structure on the coating surface, and (iii) modification of resin performance that provides film hemogenity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.