Abstract

Seven kinds of selenium nanoparticles (RP-SeNPs) were prepared by using the polysaccharides extracted from Ribes nigrum L. (RP) as the stabilizer and dispersant. Among them, RP-SeNPs-1 (94.2 nm), RP-SeNPs-2 (101.2 nm) and RP-SeNPs-3 (107.6 nm) with relatively smaller mean particle size exhibited stronger α-glucosidase inhibitory activity than other RP-SeNPs (115.3–164.2 nm) and SeNPs (288.9 nm). Ultraviolet-visible spectrophotometry, Fourier transform-infrared, X-ray diffraction, energy dispersive X-ray and X-ray photoelectron spectroscopy analyses confirmed that SeNPs were ligated with RP to form nanocomposites and displayed amorphous form. Electron microscopy images revealed that RP-SeNPs-1 − RP-SeNPs-3 were regular shape spherical nanocomposites with much better dispersion than SeNPs. Compared with SeNPs, RP-SeNPs displayed relatively high thermal, storage, pH and salt ion stability. Moreover, RP-SeNPs-1–RP-SeNPs-3 showed significantly better anti-glycation and α-glucosidase inhibitory activity than SeNPs, especially RP-SeNPs-1 with the smallest particle size. Inhibitory kinetics analysis indicated that SeNPs and RP-SeNPs inhibited α-glucosidase with competitive type and reversible mechanism. In addition, the conformation of the α-glucosidase was changed after binding with the SeNPs and RP-SeNPs-1. Fluorescence quenching and isothermal titration calorimetry assays revealed that these two nanoparticles could interact with α-glucosidase to form non-fluorescent complexes through hydrogen bonding, and the formation was spontaneously driven by enthalpy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.