Abstract

Porous organic materials (polymers and COFs) have shown a number of promising properties; however, the lability of their linkages often limits their robustness and can hamper downstream industrial application. Inspired by the outstanding chemical, mechanical, and thermal resistance of the 1D polymer poly(phenylene sulfide) (PPS), we have designed a new family of porous poly(aryl thioether)s, synthesized via a mild Pd-catalyzed C–S/C–S metathesis-based method, that merges the attractive features common to porous polymers and PPS in a single material. In addition, the method is highly modular, allowing to easily introduce application-oriented functionalities in the materials for a series of environmentally relevant applications including metal capture, metal sensing, and heterogeneous catalysis. Moreover, despite their extreme chemical resistance, the polymers can be easily recycled to recover the original monomers, offering an attractive perspective for their sustainable use. In a broader context, these results clearly demonstrate the untapped potential of emerging single-bond metathesis reactions in the preparation of new, recyclable materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.