Abstract

Polymer electrolyte pore-filled membranes, for possible use in direct methanol fuel cells (DMFCs), have been prepared by radiochemical grafting of styrene into porous poly(vinylidene fluoride) (PVDF) films using simultaneous irradiation with an electron beam (EB) followed by a sulfonation reaction. The physico-chemical properties of the obtained polystyrene sulfonic acid pore-filled membranes are evaluated using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), ac impedance, and a methanol diffusion cell. The effects of variation of the grafting yield ( Y%) on the ionic conductivity and the methanol permeability of the membranes are investigated. The ionic conductivity of the membranes increases with increase in Y% and exceeds that of the perfluorinated ionomer membrane, Nafion 117, at a grafting yield of 46%. The methanol permeability of 40 and 46% pore-filled membranes is lower than that of Nafion 117 by 53 and 71%, respectively. The performance characteristic factor suggests that these membranes are potential candidates for DMFC applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.