Abstract
In clinical practice, the wound on the surface of the skin is prone to bacterial infection, for which healing of infected wounds has always been a tremendous challenge for clinics and research institutions. We developed a multifunctional bactericidal, recyclable, and slow-release graphene oxide-based hydrogel for bacterial wound healing and real-time monitoring of bacterial infection in this study. At the same time, the material has a sensing function, which can be used in the connection between the injured skin and the continuous detection equipment. QNGH (quaternarized N-halamine-grafted GO hydrogel) is manufactured by hydrogen bonding between quaternized N-halamine-modified graphene oxide and polyvinyl alcohol (PVA). The results show that in the mouse model of full-thickness skin repair, the hydrogel can continuously release germicidal ions and recyclability, promoting wound healing and contraction. Further, the graphene oxide-based hydrogel has excellent strain sensing performance. It detects the bending and stretching movements of different parts of the human body quickly, stably, and sensitively to show an excellent real-time monitoring performance of human motion. The sensing function of the hydrogel further broadens its application field. Therefore, this hydrogel material is expected to be a candidate material for sensing devices at the wound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.