Abstract
It is an urgent task to exploit effective antimicrobial agents due to the rise of drug-resistant pathogens. Herein, antimicrobial quaternized chitosan/Ag composite nanogels (QCS/Ag CNGs) with tunable properties were fabricated through inverse miniemulsion technique with a high encapsulation efficiency of NH2-Ag nanoparticles (NPs). The QCS/Ag CNGs possess superior broad-spectrum antimicrobial activity and low biotoxicity, via synergistic sterilization of Ag NPs and QCS. Furthermore, the NH2-Ag NPs were chemically linked to the QCS matrix through Schiff base reactions, and the QCS/Ag CNGs have reactive groups, making it possible to obtain durable antibacterial cotton fabrics. Thus, QCS/Ag CNGs modified cotton fabrics exhibited laundering durability of antimicrobial effect after 100 washing cycles without sacrificing other inherent properties of cotton fabrics. Our study provides a facile and controllable method to construct polymer/inorganic CNGs to address the urgent need for antibacterial agents/fabrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.