Abstract

In this paper the control laws of preparing quantum gates are designed based on Lyapunov stability theorem for two level open quantum systems. We propose a novel Lyapunov function according to the matrix logarithm function, which has higher accuracy and faster convergence speed by comparing them with those of the Lyapunov function of distance. Based on the proposed function, we design two types of control laws to prepare quantum gates for different systems including Markovian quantum systems with phase damping and amplitude damping, non-Markovian quantum systems and closed quantum systems. Furthermore, the system robustness when the Hamiltonian contains uncertainty is further investigated. In order to verify the superiorities of proposed function and control method, NOT gates are prepared by the designed control laws for different systems in the numerical experiments, and the results are comparatively analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.