Abstract

We developed a high-performance electrically conductive and transparent PVDF-TrFE based electrode for piezoelectric pressures sensor using the electrospinning technique. The electrode was produced by depositing the reduced graphene oxide (rGO), multiwall carbon nanotubes (rGO-MCNTs) via spray coating. Various concentration of rGO and MCNTs were used and optimized for improved electrical performance of the resultant electrode. The deposition of poly (3,4-ethylenedioxythiophene) (PEDOT) was successfully achieved by using vapor phase polymerization (VPP). The morphological characteristics of the as-prepared hybrid composite nanofiber mats were analyzed by using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transforms infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (X-RD), and UV–visible spectroscopy. The electrical performance of the fabricated composite nanofibers was measured by using a four-point probe device. The results showed significant enhancement in electrical conductivity of the hybrid nanocomposite which increased up to 3916 S cm−1 and sensitivity of the developed pressure sensor was achieved 67.4 kPa−1. This work suggests that the hybrid nanocomposite can be used for the transparent electrodes in a piezoelectric pressure sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.