Abstract

The spinnabiliy of polyvinylidene fluoride (PVDF)/CaCO3 microparticle dope solution were explored via a thermally induced phase separation process, and composite hollow fiber (CHF) membranes were prepared successfully. The experiment results showed that the self-supporting property of CHF got improved after adding CaCO3 at low concentration of PVDF, so the control of spinning process became easy. The effects of CaCO3 on the structure and properties of hollow fiber membrane were investigated in terms of morphology, water flux, porosity, breakage strength, and crystallization. The results indicated that CHF presented a uniform bicontinuous structure. The permeability and porosity of CHF increased obviously when CaCO3 was removed by acid, while the breakage strength decreased slightly. CHF presented a good drying stability. POLYM. COMPOS., 34:1204–1210, 2013. © 2013 Society of Plastics Engineers

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call