Abstract

The present study aims to determine controlled crystallisation heat treatments and thermal stability for pure B phase glass-ceramic in the Y-Si-Al-O-N system. Experiments using differential thermal analysis and the ultrasonic techniques were performed on a YSiAlON glass to define the optimum nucleation temperature of B phase according to Marotta's method. Changes in elastic properties allowed to determine the optimum nucleation time and to follow the glass to glass-ceramic transformation on massive glass samples. Maximum bulk nucleation occurs after one hour in the range 960-970°C and the grain growth ends after 10 hours at the crystallisation temperature of 1050°C. XRD analyses confirm B phase as the unique crystalline phase thermally stable up to 1150°C and SEM observations show a very fine and homogeneous microstructure with a high crystal volume fraction. By determining optimum conditions for nucleation and crystal growth of B phase, good quality nitrogen glass-ceramics have been produced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.