Abstract

PtSnRh/C-Sb2O5·SnO2 electrocatalysts with different Pt/Sn/Rh atomic ratios (90:05:05, 70:25:05, and 50:45:05) were prepared by an alcohol reduction process using H2PtCl6·6H2O, SnCl2·2H2O, RhCl3·xH2O as metal sources, ethylene glycol as solvent and reducing agent, and a physical mixture of Vulcan XC72 (85 wt%) and Sb2O5·SnO2 (15 wt%) as support. The electrocatalysts were characterized by X-ray diffraction and transmission electron microscopy. The electro-oxidation of ethanol was studied by cyclic voltammetry and chronoamperometry at 25 and 50 °C and in single direct ethanol fuel cell (DEFC) at 100 °C. The diffractograms of PtSnRh/C-Sb2O5·SnO2 electrocatalysts showed the peaks characteristic of Pt face-centered cubic structure and several others peaks associated with ·SnO2 and Sb2O5·SnO2. Transmission electron micrographs of PtSnRh/C-Sb2O5·SnO2 electrocatalysts showed the metal nanoparticles distributed on the supports with particle sizes of about 2–3 nm. The electrochemical measurements and the experiments in a single DEFC showed that PtSnRh/C-Sb2O5·SnO2 (90:05:05) and PtSnRh/C-Sb2O5·SnO2 (70:25:05) electrocatalysts exhibited higher performance for ethanol oxidation in comparison with PtSnRh/C electrocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.