Abstract

Iron oxide coated platinum nanowires (Pt@Fe(2)O(3)NWs) with a diameter of 2.8 nm have been prepared by the oxygen oxidation of FePt NWs in oleylamine. These "cable"-like NWs were characterised by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and X-ray absorption fine structure analysis. These Pt@Fe(2)O(3) NWs were used as "non-support" heterogeneous catalysts in oxidation of olefins and alcohols. The results revealed that it is an active and highly selective catalyst. Styrene derivatives were tested with molecular oxygen as the sole oxidant, with benzaldehyde successfully obtained from styrene in an absolute yield of 31%, whereas the use of tert-butyl hydroperoxide as the sole oxidant in the oxidation of alcohols led to yields of more than 80% of the corresponding ketone or aldehyde. This unsupported catalyst was found to be more active (TOF=96.5 h(-1)) than other reported Fe(2)O(3) nanoparticle catalysts and could be recycled multiple times without any notable decrease in activity. Our findings will extend the use of such nanomaterial catalysts to new catalytic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.