Abstract

Graphene (Gr) is synthesized by the direct reduction of tetrachloroethylene with sodium in paraffin oil rather than by the intermediate steps of oxidized graphite (GO) and oxidized graphene (GrO). Gr is used as support for the subsequent deposition of Pt nanoparticles and the catalytic behavior during oxygen reduction (OR) on the as-prepared Pt/Gr is studied. The structure, morphology, composition, and surface properties of the as-prepared Pt/Gr catalysts were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and electrochemical measurements. We found that the Pt nanoparticles with a mean particle size of 3.1 nm were well-dispersed on the Gr. The onset potential of the oxygen reduction on the Pt/Gr electrode shifted to the positive direction by 24 mV compared with the electrode made from commercial Pt/C catalysts (Johnson-Matthey Co. JM-Pt/C). The exchange current density of the OR on the Pt/Gr electrode was found to be 1×10-3 mA·cm-2, which is 2.5 times as that of the electrode made from the JM-Pt/C catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.