Abstract

Poly(2,6-dimethyl-1,4-phenylene oxide)(PPO)-silica mixed matrix membranes (MMMs) were synthesized through the in-situ sol–gel method. The effects of the acid–base catalysis conditions and silica loading weight on the gas separation performance of the membranes were investigated. The functional groups, crystalline structure, thermal stability, and morphology of the MMMs were examined using Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA), respectively. The results indicate that using the in-situ sol–gel method to synthesize PPO-silica MMMs is beneficial for improving the adhesion between the silica and polymer and for the dispersion of the silica. The additives significantly enhanced the thermal stability of the membranes. Compared with pure PPO membranes, the PPO-silica MMMs prepared with 10 wt.% acid-silica loading exhibited the best H2/CO2 separation properties: H2 permeability was enhanced from 82.1 to 548.7 Barrer, and an H2/CO2 separation ratio of approximately 3.56 was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.