Abstract
Porous PMMA/Na +–montmorillonite (MMT) cation-exchange membranes were successfully prepared by entrapment method in this study. One approach (simple mixing) was to mix commercial PMMA polymer with Na +–MMT clays in solvent for membrane preparation (Membrane A). The other approach (emulsion polymerization) was to synthesize the PMMA/Na +–MMT polymer composite via emulsion polymerization first, followed by membrane casting (Membrane B for Kunipia F clays and Membrane C for PK-802 clays). Membrane morphology and properties were characterized. The thermogravimetric analysis (TGA) verified the near complete incorporation of feed Na +–MMT clays in the PMMA/Na +–MMT composite membranes, while X-ray diffractograms (WXRD) exhibited the slightly enlarged interlayer spacing of Na +–MMT. The range of cation-exchange capacity (CEC) was 9–32 μequiv./47 mm disc. For batch cationic dye adsorption, the best performance was achieved by Membrane B with feed Na +–MMT/MMA (M/P) ratio (w/w) = 0.5 and Membrane C with feed M/P = 0.6, where about 95% Methyl violet adsorption was attained in 2 h. The optimal desorption solution was 1 M KSCN in 80% methanol and its related dye desorption efficiency was 92%. In the flow process using one piece of 47 mm disc of Membrane B (M/P = 0.5), dye solution was recirculated for 6 h and ≥85% dye could be removed. Higher than 94% of dye was desorbed at 1 or 4 mL/min, and the membrane regenerability was proved by successfully performing three consecutive cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.