Abstract

Membrane distillation is an emerging wastewater treatment technology that harnesses low-grade heat as an energy source and exhibits potential for complete desalination. Nonetheless, two notable challenges hinder the practical application of this technology: membrane wetting and fouling. To counter these challenges, an innovative anti-fouling Janus membrane with asymmetric wettability was developed through electrospinning. The hydrophobic layer was formed using tetraethyl orthosilicate/polysulfone (PSF), and the superhydrophilic layer was created using polyvinylpyrrolidone (PVP)/PSF. A sensitive adhesion probe was used to assess the anti-fouling performance of the Janus membrane against oil. Molecular dynamics simulation suggested that PVP reduced the adsorption tendency of the membrane for humic acid (HA). Under experimental conditions involving saline water with HA and a saline oil–water emulsion, the non-Janus membrane suffered severe fouling, resulting in rapid water permeate flux decline. However, the Janus membrane demonstrated consistent permeate flux (26.84 LMH and 24.92 LMH) and an impressive salt rejection rate (> 99.99%). This study suggests that the Janus membrane, with its high permeate fluxes and remarkable resistance to fouling and wetting, could be an effective solution for wastewater treatment, with considerable potential for future application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.