Abstract
Polystyrene/SiO2 composite nanoparticles (PS-g-Silica) were prepared by an in-situ surface-initiated nitroxide-mediated radical polymerization. After SiO2 nanoparticles were treated by thionyl chloride (SOCl2), peroxide initiation groups were immobilized on their surfaces through a reaction with tertiary butyl hydroperoxide (TBHP). Then surface nitroxide-mediated radical polymerization was initiated and polystyrene was grafted on the surface of SiO2 particles. Composite nanoparticles were characterized by IR spectra, transmission electron microscopy (TEM), atomic force microscopy (AFM) and thermogravimetry (TGA) and the results indicated that the surface-initiated nitroxide-mediated radical polymerization could be successfully used to synthesize well-dispersive PS/SiO2 nanocomposites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.