Abstract

A novel adsorbent with high adsorption capacity to remove cationic dyes was synthesized. Sodium 4-styrene sulfonate (SSS) was grafted polymerization on the surface of magnetic chitosan microspheres via -NH2/S2O82− surface initiating system, obtaining MCS-g-PSSS microspheres. The grafted microsphere was characterized by Fourier transforms infrared spectroscopy, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, vibration sample magnetometer and the Brunauer-Emmett-Teller. Cationic dyes were adsorbed by MCS-g-PSSS and methylene blue(MB) was acted as a typical example. The adsorption performance was explored by varying experimental conditions. The results showed the maximal adsorption capacity was 989 mg/g at pH 1 at 25 °C. The pseudo-second order model was found to be applicable for the adsorption kinetics. The adsorption capacity increased with rising temperature and it decreased owing to adding of ions. The adsorption isotherms were the best fitted by Langmuir. MCS-g-PSSS for MB showed high adsorption capacity due to the strong electrostatic interactions and π-π stacking, which was explained by FTIR and XPS and was verified by DFT calculations. The degree of adsorption spontaneity increased with rising the temperature. The grafted MCS-g-PSSS microspheres had high adsorption capacity for various kinds of cationic dyes and excellent for remove MB in the aqueous solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call