Abstract

In this paper, the solid-state shear milling (S3M) strategy featuring a very strong three-dimensional shear stress field was adopted to prepare the high-performance polyoxymethylene (POM)/molybdenum disulfide (MoS2) functional nanocomposite. The transmission electron microscope and Raman measurement results confirmed that the bulk MoS2 particle was successfully exfoliated into few-layer MoS2 nanoplatelets by the above simple S3M physical method. The polarized optical microscope (PLM) observation indicated the pan-milled nanoscale MoS2 particles presented a better dispersion performance in the POM matrix. The results of the tribological test indicated that the incorporation of MoS2 could substantially improve the wear resistance performance of POM. Moreover, the pan-milled exfoliated MoS2 nanosheets could further substantially decrease the friction coefficient of POM. Scanning electron microscope observations on the worn scar revealed the tribological mechanism of the POM/MoS2 nanocomposite prepared by solid-state shear milling. The tensile test results showed that the pan-milled POM/MoS2 nanocomposite has much higher elongation at break than the conventionally melt-compounded material. The solid-state shear milling strategy shows a promising prospect in the preparation of functional nanocomposite with excellent comprehensive performance at a large scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call